

9ième Atelier en Evaluation de Performances Aussois 1-4 juin 2008

Intégration des flux inverses dans la gestion des stocks et de la production

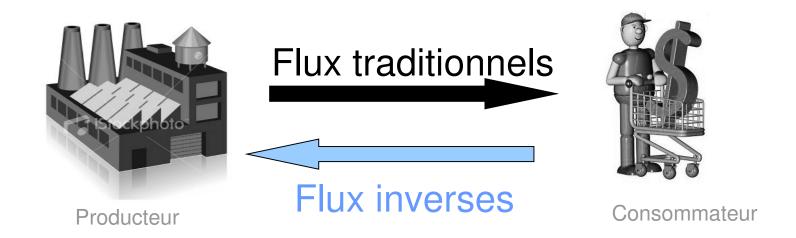
Hichem ZERHOUNI, Jean-Philippe GAYON and Yannick FREIN

9^{ième} Atelier en Evaluation de Performances Aussois 1-4 juin 2008

Pilotage d'un système de production avec retours de produits corrélés aux demandes

Hichem ZERHOUNI, Jean-Philippe GAYON and Yannick FREIN

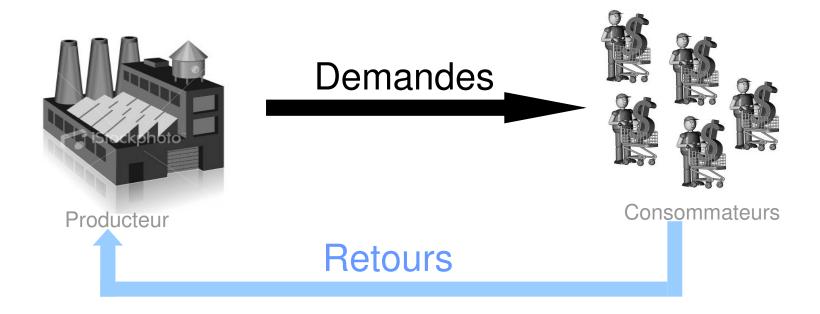
Introduction



- Récupération / réutilisation de produits (raisons écologiques, légales and économiques)
- Retours de produits → compliquent la gestion des stocks

AEP 9

Introduction



- Comment piloter un tel système ?
- Faut-il tenir compte de la dépendance ?

AEP 9

littérature

- Logistique inverse
 - Fleishmann *et* al. (1997)
 - Carter & Ellram (1998)
- Dépendance demande/retours
 - De Brito & Dekker (2001)
 - Kiesmüler & van der Laan (2001)
- Modèles stochastiques
 - Gayon (2007)

Plan

- Modèle I : Retours de produits non corrélés aux demandes
 - Politique optimale
 - Calcul du base stock optimal
- Model II : Retours de produits corrélés aux demandes
 - Politique optimale
 - Calcul du base stock optimal
- Effet de la dépendance : étude numérique
- Conclusion & Travaux & Perspectives

Modèle I:

Retours de produits non corrélés aux demandes

AEP 9

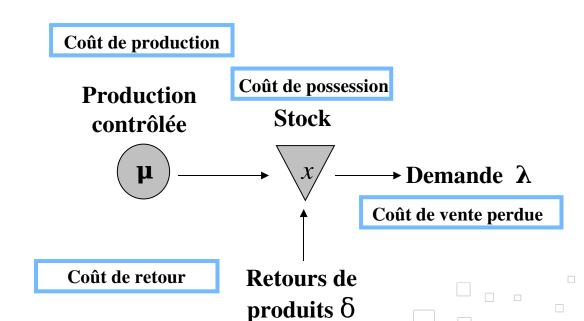
Modèle

Modèle I

Retours de produits non corrélés aux demandes

- Etat du system à t:
 - Niveau du stock x

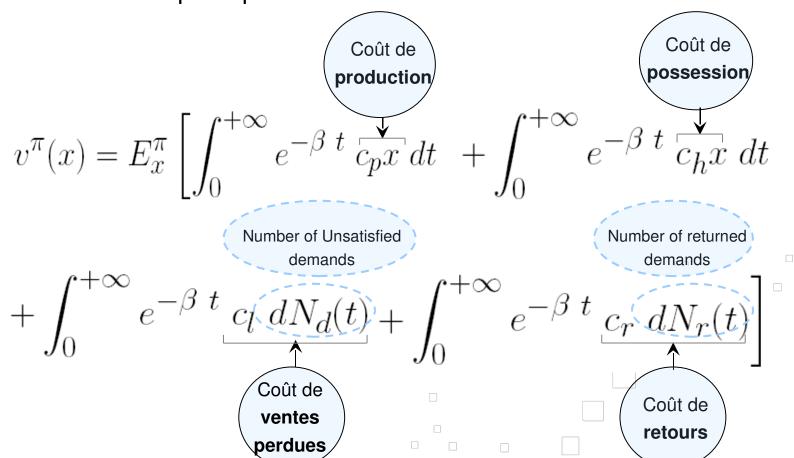
- Décisions à prendre :
 - Produire ou non



- Objectif:
 - Caractériser la politique optimale qui minimise le coût moyen

Processus de décision markovien

• $v^\pi(x)$: coût total estimé actualisé total à horizon infini associé à la politique π et à l'état initial x



Processus de décision markovien

• $v^\pi(x)$: coût total estimé actualisé total à horizon infini associé à la politique π et à l'état initial x

Politique optimale : π^*

Modèle

$$v^{\pi^*} \equiv v^*(x) = \min_{\pi} v^{\pi}(x)^{\text{def}}$$

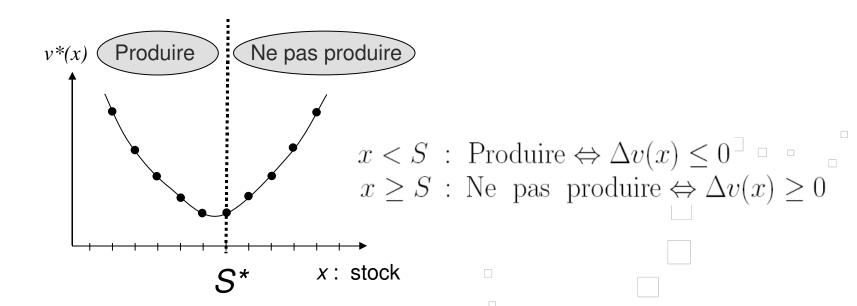
Processus de décision markovien

- $v^\pi(x)$: coût total estimé actualisé total à horizon infini associé à la politique π et à l'état initial x
- Equations d'optimalité : $v^*(x) = Tv^*$

Où l'opérateur $\,T\,$ est défini comme :

Politique optimale

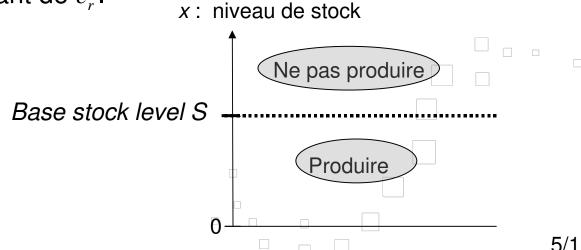
- Preuve : v*(x) est convexe en x
 - $-\Delta v(x) = v(x+1) v(x)$ est croissant in x
 - Preuve par itération



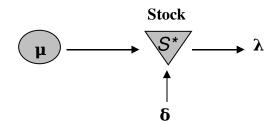
Modèle

Politique optimale

- La politique optimale est une politique base stock. Il existe *S* (base-stock level) tel que :
 - Si x < S, produire
 - If $x \ge S$, ne pas produire
 - S^* est décroissant avec μ , δ , c_{μ} , croissant avec λ , c_{μ} et est indépendant de c_r .

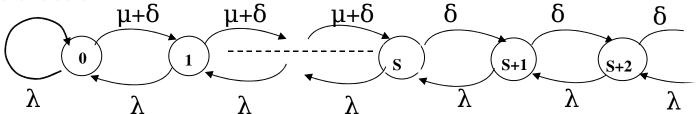


Calcul du S optimal



Modèle

 Chaîne de Markov à temps continu représentant le niveau de stock



Probabilités stationnaires:

$$\pi_x = \begin{cases} \rho_1^{-x} \pi_0 & \text{if } 0 \le x \le S \\ \rho_1^{-S} p^{x-S} \pi_0 & \text{if } x \ge S \end{cases}$$

$$\pi_0 = \begin{cases} \rho_1^S \left(\frac{1 - \rho_1^{S+1}}{1 - \rho_1} + \frac{p}{1 - p} \right)^{-1} & \text{avec} \\ \frac{1 - p}{1 + S(1 - p)} & \text{if } \rho_1 \ne 1 \end{cases}$$

$$\pi_0 = \begin{cases} \rho_1^S \left(\frac{1 - \rho_1^{S+1}}{1 - \rho_1} + \frac{p}{1 - p} \right)^{-1} & \text{if } \rho_1 \ne 1 \end{cases}$$

Modèle

Calcul du S optimal

Coût total moyen pour un base-stock level S donné:

$$C(S) = C_h(S) + C_l(S) + C_p(S) + C_r(S)$$

$$\text{Coûts de possession} \text{Coûts de ventes perdues} \text{Coûts de production} \text{Coûts des retours}$$

$$C_h(S) = \begin{cases} c_h \pi_0 & \left(\frac{\rho_1^{S+1} - \rho_1 - \rho_1 S + S}{\rho_1^S (1 - \rho_1)^2} + \frac{1}{\rho_1^S} \frac{p(1 + qS)}{q^2} \right) & \text{if } \rho_1 \neq 1 \\ c_h \pi_0 & \left[\frac{S(S+1)}{2} + \frac{p(1 + qS)}{q^2} \right] & \text{if } \rho_1 = 1 \end{cases}$$

$$C_l(S) = \lambda c_l \pi_0 \quad C_p(S) = \mu c_p \left(1 - \frac{\rho_1^{-S} \pi_0}{q} \right) \quad C_r(S) = \delta c_r$$

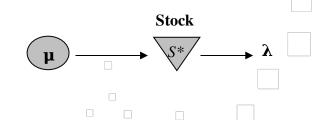
Modèle

Calcul du S optimal

• $S \in [0, S_{max}]$

$$S_{optimal} = S^* = \min_{[0, S_{max}]} C(S)$$

 $S_{max} = S_{mod\`{e}le\ sans\ retours}^*$



Modèle II:

Retours de produits **corrélés** aux demandes

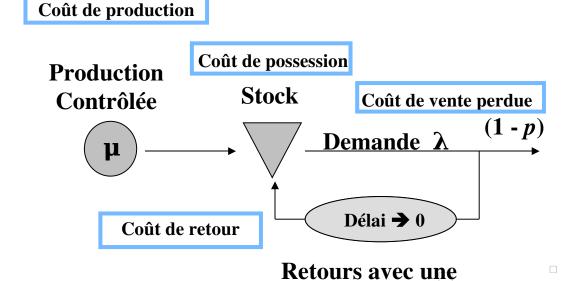
Modèle

Modèle II

Retours de produits corrélés aux demandes

- Etat du system à t:
 - Niveau du stock x

- Décisions à prendre :
 - Produire ou non
- Objectif:
 - Caractériser la politique optimale



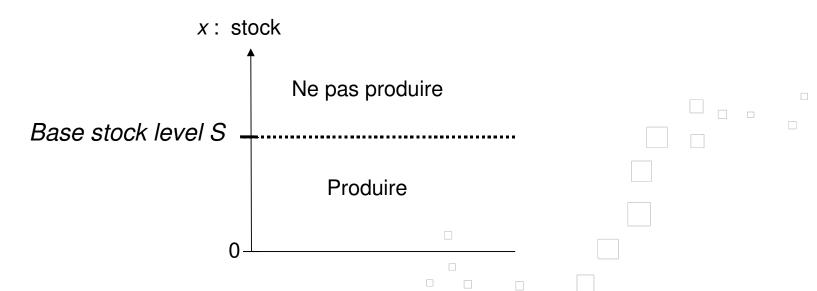
probabilité p

Politique optimale

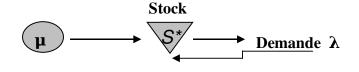
La politique optimale : politique base stock.

Modèle

- Vérifiée numériquement
- Démontrée analytiquement sous conditions ($c_r = c_l$)

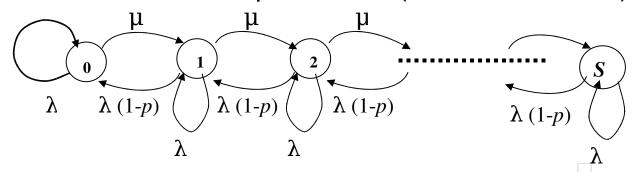


Calcul du S optimal



Retours avec une probabilité *p*

• Chaîne de Markov à temps continu (niveau de stock)



Probabilités stationnaires : ^p

$$\pi_x = \begin{cases} \frac{\rho_2^{S-x}(1-\rho_2)}{1-\rho_2^{S+1}} & \text{if } \rho_2 \neq 1\\ \frac{1}{S+1} & \text{if } \rho_2 = 1 \end{cases} \text{ avec } \rho_2 = \frac{q\lambda}{\mu}$$

AEP 9

Computation of the optimal S

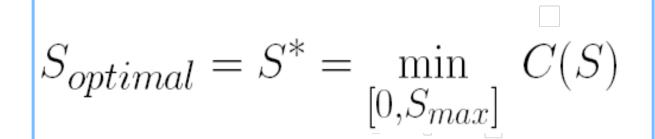
Coût total moyen pour un base-stock level S donné:

$$C(S) = C_h(S) + C_l(S) + C_p(S) + C_r(S)$$

$$C_h(S) = \begin{cases} c_h \frac{\rho_2^{S+1} - \rho_2 - \rho_2 S + S}{(1 - \rho_2)(1 - \rho_2^{S+1})} & \text{if } \rho_2 \neq 1 \\ c_h \frac{S}{2} & \text{if } \rho_2 = 1 \end{cases} C_l(S) = \lambda c_l \pi_0$$

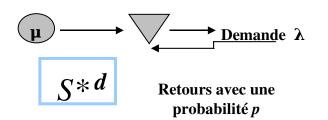
$$C_p(S) = \mu c_p(1 - \pi_S)$$

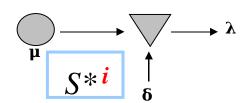
$$C_p(S) = \mu c_p(1 - \pi_S)$$
 $C_r(S) = \lambda \ p \ c_r \ (1 - \pi_0)$



Effet de la dépendance

Etude numérique





- Politique optimale du modèle dépendant : S^{*d} ; $C^{\iota}(S^{*\iota})$
- Heuristique du modèle dépendant : S^*

$$\Delta C = \frac{C'(S^*^i) - C^d(S^*^d)}{C'(S^*^d)}$$

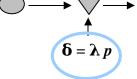
Quel est le surcoût résultant si l'on ignore la corrélation entre la demande et les retours ?

Instances:

$$- \mu = 1$$

$$\bigcirc \longrightarrow \bigvee \longrightarrow X$$

$$- c_h = 1$$



$$-\lambda \in \{0.2,0.4,\ldots,2\}$$

$$-p \in \{0.05, 0.10, \dots, 0.95\}$$

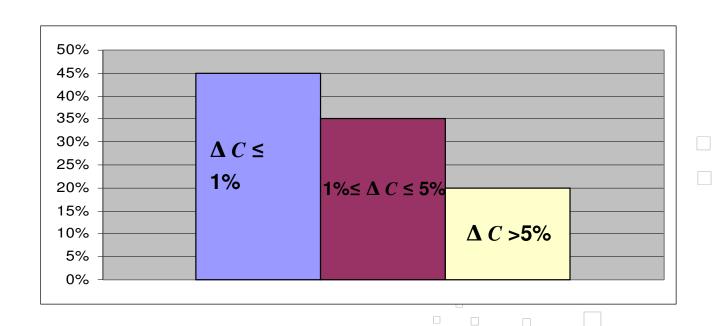
$$-c_p \in \{0,1,2,4,\ldots,512\}$$

$$-c_1 \in \{1,2,4,\ldots,512\}$$

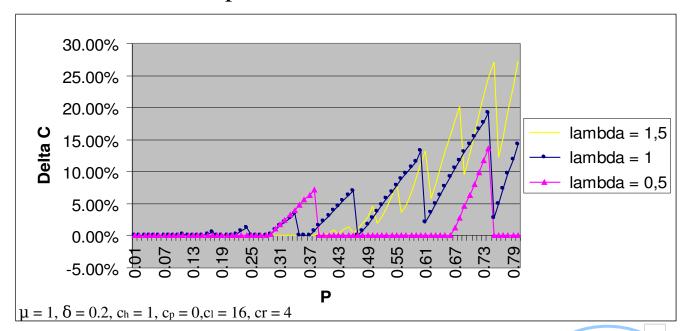
$$-c_r \in \{1,2,4,\ldots,512\}$$

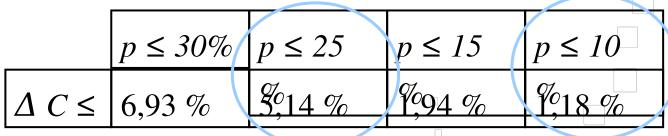
14/16

- 60000 instances
- $\Delta C \le 1\%$ (45% des instances)
- $\Delta C > 5\%$ (20% des instances)



Influence de p sur ΔC





• Δ C relativement sensible à λ

Modèle

• Δ *C* relativement sensible à c_{I}

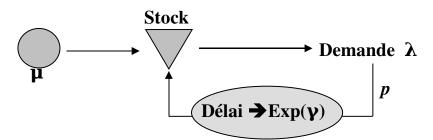
• ΔC peu sensible à c_r

Conclusion

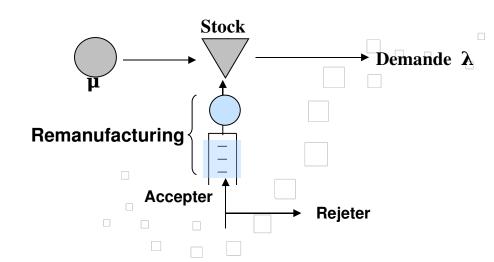
- Caractérisation de la politique optimale :
 - Modèle indépendant
 - Modèle dépendant (cr = cl)
 - Monotonicité de S* en fonction des paramètres du système
- Base stock calculé pour les deux modèles
- Influence de la dépendance (demande/retours) sur le coût moyen:
 - Performance (cout) principalement influencée par le pourcentage des produits retournés (p).

Travaux & Perspectives

- Modèle dépendant avec délai de retour non-nul
 - Retour observables
 - Retours non-observables



Introduction du remanufacturing avec option de rejet



Questions?