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1. Introduction

Modeling systems with huge Markov chain is
still a hard problem when the chain does not ex-
hibit some regularity or symmetry which allow
analytical techniques or lumping. Stochastic com-
parison technique by which both transient and
steady-state bounding distributions can be compu-
ted, lets to overcome this problem. In this work,
we present a new approach that shows how we
can compute stochastic bounds using the Censo-
red Markov chain (CMC) and how we can deal
with large Markov chains. The proposed approach
may be useful to provide steady-state and tran-
sient rewards and the first passage time as well.
We present here the key idea of algorithms recently
developed.

2. CMCs and Stochastic Bounds

Consider a discrete time irreducible Markov chain
{Xn : n = 1, 2, . . .} with finite state space S. Sup-
pose that S = E ∪ Ec, E ∩ Ec = ∅. Suppose that
the successive visits of Xn to E take place at time
epochs 0 < n1 < n2 < . . . <. Then the chain
{XE

t = Xnt
, t = 1, 2, . . .} is called the censored chain

(CMC) with censoring set E [5]. Let Q denote the
transition matrix of chain Xn. Consider the parti-
tion of S to obtain a block description ofQ :

Q =

(

QE QEEc

QEcE QEc

)

E

Ec (1)

∗
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The CMC only watches the chain when it is in E.
The matrix of the CMC is (Th. 2 in [5]) :

SE = QE + QEEc

(

∞∑

i=0

(QEc)i

)

QEcE (2)

Assume that (QEc) does not contain any recurrent
class, the fundamental matrix is

∑∞

i=0(QEc)i =

(I − QEc)−1. CMCs have also been called restric-
ted or watched Markov chains. Note that it is not
necessary here that the chain is ergodic and we
can study the absorbing time. In many problems
Q can be large and so it is difficult to compute
(I−QEc)−1 to finally get SE. Deriving bounds from
QE and some information on the other blocks wi-
thout computing SE is therefore an interesting al-
ternative approach. We have developed several al-
gorithms to compute bounds for CMCs : (1) Truf-
fet’s algorithm [4] ; (2) many algorithms based on
graphs and paths ; (3) DPY algorithm that we have
already presented in [1] and which is based on
blocks QE and QEcE. In the following we restrict
ourselves due to the space limitation to the first
two types of algorithms.

2.1. Bounds

Consider two probability distributions p and q, we
say that p is smaller than q in the strong stochastic
sense (p ≤st q) iff

∑n

j=k pj ≤
∑n

j=k qj, 1 ≤ k ≤ n.
It is known that monotonicity [2] and comparabi-
lity of the transition probability matrices yield suf-
ficient conditions for the stochastic comparison of
Markov chains and their steady-state distributions.
Vincent’s algorithm [2] is the simplest solution to
obtain amonotone upper boundingmatrix of a sto-
chastic matrix. To build a monotone upper bound
of QE (which is only substochastic), Truffet’s me-
thod consists in the following 2 steps : first add
the slack probability in the last column of QE to
make it stochastic and then apply Vincent’s algo-
rithm to obtain a monotone upper bound TE to SE.
Let T(M) be the stochastic matrix obtained when
we apply Truffet’s method on substochastic matrix
M. The methods used in this paper are justified by
the following theorem whose proof is given in [3] :

Theorem 1 Let LE be an element-wise lower bound to
SE, LE ≤ SE. Then SE ≤st T(LE) and for any sub-
stochastic matrix LE ≤ ME ≤ SE we have SE ≤st

T(ME) ≤st T(LE).

Clearly QE is an element-wise lower bound of SE

and the theorem generalizes Truffet’s method. It
also states that the more accurate the element-wise
lower bound of SE, the more accurate the stochas-
tic upper bound of SE. To find a better lower bound



than QE, we must consider again the definition of
the transition matrix for a CMC (Eq. 2). The funda-
mental matrix clearly has a sample-path structure
which can be used to obtainmore accurate bounds.

Remark 1 (
∑∞

i=0(QEc)i)[j, k] is the sum of all proba-
bility of paths entering in Ec from j and leaving it after
an arbitrary number of visits inside Ec from k.

We only need to add some paths instead of genera-
ting all of them because we need element-wise lo-
wer bounds of the fundamental matrix. This is the
main idea of the approach based on paths.We have
adapted several well-known graph algorithms to
find some paths and compute their probability. The
first passage time bound is also justified by this
path structure of the fundamental matrix.

Remark 2 We want to compute the first passage time
distribution of state j in E when the initial state k is in
E. In the CMC, all paths going through Ec appear with
smaller lengths. Thus the passage time in the CMC pro-
vides a stochastic lower bound of the real passage time.

2.2. Algorithms

The algorithms must find some paths which are
summed up in the fundamental matrix. We have
developed several algorithms and data structures
to deal with paths exploration. The aim is to deal
with chains which are so large that the transition
matrix does not fit in memory. The first step is to
obtain the states and transitions of the chain from
some specifications. Transitions are described by
evolution equations of states with events. We pro-
ceed by a Breadth-First Search from a chosen ini-
tial state to generate the set E of states. Each tran-
sition is associated to an event which is described
by a probability that may be state-dependent and
by the transitions it triggers for each of the states.
We always assume that matrix QE fits in memory
with sparse format. But we also have several algo-
rithms and data-structures to deal with set Ec and
the three other blocks when they fit or not in me-
mory. The theory and the algorithms are presented
in [3].
The first step is to remove the single loops because
they do not help to find the first path from E to
E going through Ec. The loops will be added at
the end of the algorithm to generate a set of paths
and increase the lower bound of the probability.
The two basic techniques are Breadth-First Search
and Shortest Path algorithms. Breadth-First Search
algorithm generates all the paths of length smal-
ler than d while Shortest Path algorithm gives the
path with the higher probability when the cost of

link (a, b) is |log(Q(a, b))|. We add a constraint on
the length to avoid paths with a very large number
of states (i.e. d). Remember that we compute the
shortest path according to a cost function but not
the path with the shortest hop number. We com-
pute the probability of the paths we have found
and add it to the corresponding elements of QE to
obtain an element-wise lower bound LE to SE.

2.3. An example

We present a rather abstract model to give some re-
sults and time measurements. We consider a set of
N resources : they can be operational or faulty. We
have two types of faults (hard/soft). The fault ar-
rivals follow independent Poisson processes with
rate λh = 0.0001 and λs = 0.5. The distribution
of times to fix a fault are exponential with rate
µh = 0.02 and µs = 1 except when all the re-
sources are faulty. In that case, the repairman can
speed up the fixing and with rate µ = 1 all the
resources are repaired. Note that the considered
chain is not NCD because of the transitions with
rate µ. We present in Table 1, the probability p to
haveN resources operational, the upper bound on
this probability and the time T (in second) to com-
pute them. Numerical examples are obtained by
gathering in set E the states with 0 hard error. We
can see that computation times are drastically re-
duced using bounding approach. It also provides
results when exact analysis fails (N = 10000).

model size Exact Bound
N space size T p T p

100 5151 1.57 3.61e-6 0.17 4.12e-6
500 125751 168.47 7.51e-7 0.91 8.71e-7
1000 501501 603.14 4e-7 2.31 4.80e-7
10000 50015001 - - 123.01 2.89e-7
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