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Résumé

In this paper we discuss different monotonicity de-
finitions applied in stochastic modelling and dis-
cuss the relationships between them. Obviously,
the monotonicity concept depends on the relation
order that we consider on the state space. In the
case of total ordering the stochastic monotonicity
used in stochastic modelling and the realizable mo-
notonicity used in perfect simulation are equiva-
lent to each other while in the case of partial order
there is only an implication between them.

1. Introduction

We consider in this paper monotonicity definitions
applied in different context of stochastic model-
ling. First of them is the stochastic monotonicity
concept associated to a stochastic ordering rela-
tion. In general the considered order relation on the
state space is a total ordering. However the partial
order is more suitable for multidimensional mo-
dels. We explain first the stochastic monotonicity
for a state space endowed with at least a pre-order
and study the relationships with other monotoni-
city definitions.
The other monotonicity definitions are related
to the perfect simulation. It has been shown
that if the underlying model is realizable mono-
tone, it is possible to generate only two trajecto-
ries (sandwiching property) [2]. This concept is
called realizable monotonicity. The other defini-
tion is used in a software to provide perfect si-
mulation of queueing networks (http ://www-
id.imag.fr/Logiciel/psi/). This is called event mo-
notonicity and has been defined in more general
terms in the work of Glasserman and Yao [6].
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In this paper we present these definitions by em-
phasizing if the state space is totally ordered or not.
We then compare them to give insights on the im-
plications between them. We have considered rela-
tions between monotonicity definitions in a totally
ordered state space [5]. In this case, the stochastic
monotonicity and the realizable monotonicity are
equivalent to each other. Therefore it is possible to
construct bounding and stochastic monotone mo-
dels in order to do monotone perfect simulations
of systems which are not realizable monotone.

2. Different Definitions of Monotonicity

Here we present different monotonicity definitions
used in stochastic modelling. First of them is the
stochastic monotonicity which is defined in [1,7].
In the following example, we discuss the st-
monotonicity by considering respectively a total
order and then a partial order relation on the state
space to show that there is no implication.
Example

P =


1/2 1/6 1/3 0

1/2 1/6 0 1/3

1/2 0 1/6 1/3

0 0 2/3 1/3


First we consider a total order : S = {a, b, c, d} and
a � b � c � d. We can see easily that the rows are
increasing , so the matrix is stochastic monotone in
the total ordering. Now we consider a partial or-
der : a � b � d ; and a � c � d. The increasing sets
are Γ1 = {a}, Γ2 = {c, d}, Γ3 = {b, d}, Γ4 = {b, c, d},
Γ5 = {a, b, c, d}. P is not monotone with respect
to this order. For instance, for Γ3 = {b, d}, the pro-
bability measure for row b is 1/6 + 1/3, while this
measure is 1/3 for row d. Since b � d, this violates
the monotonicity.
Therefore we can see that the monotonicity with a
total order does not imply the monotonicity with a
partial order.

2.1. Monotonicity in Perfect simulation
We now present monotonicity definitions applied
in perfect simulation. Let us remind that we consi-
der that state space S is endowed with a relation
order � which is at least a pre-order. First we will
give the definition of realizable monotonicity, used
in Fill’s works [3].

2.1.1. Realizable monotonicity
For simulation we use the following representation
of a DTMC :



Definition 1 (Transition function). A matrix tran-
sition P can be described by a transition function Φ :
S× [0, 1] → S, which is defined by

Xn+1 = Φ(Xn, Un+1);

where Xn is nth observed state of the system, and
Un{n∈Z} the sequence of inputs of the system, typically
a sequence of calls to a RANDOM function uniformally
distributed on [0, 1].

Definition 2 (realizable monotonicity). Let P be a
transition matrix defined on state space S. P is said to be
realizable monotone, if there exists a transition function
Φ, defined as in definition (1), such that Φ preserves
the order relation i.e. for all u ∈ U, we have Φ(x, u) �
Φ(y, u), whenever x � y.

2.1.2. Event monotonicity
Let us now present the monotonicity defini-
tion used to perform perfect simulation of finite
queuing networks by software Psi2 [4].

Definition 3 (event). An event e is an application de-
fined on S, that associates to each state x ∈ S a new
state denoted by Φ(x, e). Φ is called the transition
function of the system.

Definition 4 (Transition function ). A DTMC is des-
cribed by a transition function Φ with events :
Φ : S × E → S, such that for each event e ∈ E we
have,

Xn+1 = Φ(Xn, e)

where Xn is nth observed state of the system, and Xn+1

is the state resulting from Xn upon the occurrence of the
event en+1.

Definition 5 (event monotonicity). The underlying
model is said to be event monotone, if the transition
function (def. 4) preserves the order ie. for each e ∈ E

∀(x, y) ∈ S x � y → Φ(x, e) � Φ(y, e)

There is no equivalence between the event-
monotonicity (resp. the realizable monotonicity) in
the total ordering and the partial ordering.

3. Stochastic monotonicity and realizable mono-
tonicity

When the state space is totally ordered the stochas-
tic monotonicity and the realizable monotonicity
are equivalent. However the stochastic monotoni-
city is necessary but not sufficient for realizable
monotonicity for partially ordered state spaces. [2]

Theorem 1. When the state space is totally ordered,
there is an equivalence between the stochastic monoto-
nicity and the realizable monotonicity.

If we consider a partial order on the state space, we
have only an implication between these two mono-
tonicity definitions.

Theorem 2. In the case of partially ordered state
spaces, if the system is realizable monotone, it is also
stochastically monotone.

The reciprocal of this implication is not true.
We can not always find a monotone transition
function for a stochastic monotone system..

4. Event monotonicity and realizable monotoni-
city

Now we will study the relation between the event
monotonicity used for perfect monotone simula-
tion [4] , and realizable monotonicity defined by
Fill [2]. We assume that the state space S is endo-
wed by a partial order and the results obtained in
this section are valid also for total order case.

Theorem 3. If the system is event monotone, its tran-
sition matrix is realizable monotone.

The reciprocal of this implication is not true, when
the set of events is predefined. But if we add a new
events in the system, we can obtain a monotone
event representation for the model.

Proposition 1. If the system is realizable monotone, it
is possible to define an event monotone transition func-
tion.
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