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Stochastic comparison (1)

Let S = {1, 2, · · · , n} be a finite state space.

Definition (≤st order )

Let p and q two probability distributions
p ≤st q iff

∑n
j=k pj ≤

∑n
j=k qj ∀k = 1, 2, . . . , n

Definition (≤st comparison of two discrete-time Markov chain)

Let {X (t), t > 0} and {Y (t), t ≥ 0} be two DTMC taking values
in S . {X (t), t ≥ 0} is said to be less than {Y (t), t ≥ 0} in the
strong stochastic sense, that is,

{X (t), t ≥ 0} ≤st {Y (t), t ≥ 0} iff X (t) ≤st Y (t) ∀t.



Stochastic comparison Censoring techniques Bounding performability measures by censoring techniques Algorithms for bounding censo

Stochastic comparison (1)

Let S = {1, 2, · · · , n} be a finite state space.

Definition (≤st order )

Let p and q two probability distributions
p ≤st q iff

∑n
j=k pj ≤

∑n
j=k qj ∀k = 1, 2, . . . , n

Definition (≤st comparison of two discrete-time Markov chain)

Let {X (t), t > 0} and {Y (t), t ≥ 0} be two DTMC taking values
in S . {X (t), t ≥ 0} is said to be less than {Y (t), t ≥ 0} in the
strong stochastic sense, that is,

{X (t), t ≥ 0} ≤st {Y (t), t ≥ 0} iff X (t) ≤st Y (t) ∀t.



Stochastic comparison Censoring techniques Bounding performability measures by censoring techniques Algorithms for bounding censo

Stochastic comparison (2)

Definition (≤st monotonicity)

Let P be a stochastic matrix. P is said to be stochastically
st-monotone if for any probability vectors p and q:

p ≤st q =⇒ p P ≤st q P

.

Let P [i , ∗] be the row i of the matrix P .

P is ≤st monotone iff P [i , ∗] ≤st P [i + 1, ∗],∀i ∈ S .

P is not monotone, Q is monotone.

P =





0.2 0.3 0.5
0.0 0.6 0.4
0.1 0.4 0.5



 Q =





0.3 0.4 0.3
0.2 0.5 0.3
0.2 0.4 0.4




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Stochastic comparison (3)

P ≤st Q iff P [i , ∗] ≤st Q[i , ∗],∀i ∈ S .

Theorem (Sufficient conditions for DTMC comparison)

Let {X (t), t ≥ 0} and {Y (t), t ≥ 0} be two time-homogeneous

DTMC and P and Q be their respective probability transition

matrices. Then:

{X (t), t > 0} ≤st {Y (t), t > 0}

if:

• X (0) ≤st Y (0),

• st-monotonicity of P or Q

• st-comparability of the matrices holds, that is,

P [i , ∗] ≤st Q[i , ∗] ∀i .
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Construction of ≤st monotone upper bound

For a matrix P Vincent’s algorithm construct a matrix Q such
that

P ≤st Q

Q is ≤st monotone.

Inequalities denoting the two sufficient conditions are replaced
by equalities to construct optimal bounds.

{ ∑n
k=j Q[1, k] =

∑n
k=j P [1, k]

∑n
k=j Q[i + 1, k] = max(

∑n
k=j Q[i , k],

∑n
k=j P [i + 1, k])

Bounds obtained by this algorithm are optimal.
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steady-state distribution

Let Q be a monotone, upper bounding matrix for P for the
st-ordering. If the steady-state distributions (πP and πQ) exist,
then:

πP ≤st πQ

Suppose that Y is an absorbing DTMC, k is an absorbing
state.

Let Z be an ≤st monotone upper bound : Y ≤st Z.

Assume that k is placed at the end of S .

Absorption probability

Let πY [i , k] (resp. πZ [i , k]) the absorption probability in k for
chain Y (resp. Z) when initial state is i :

πY [i , k] ≤ πZ [i , k]
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Transition matrices of Y and Z can be written respectively:

[

I 0
R Y

] [

I 0
R ′ Z

]

Fundamental matrix of Y and Z (states of Y and Z are
transient):

MY = (I − Y )−1 MZ = (I − Z )−1

Mean first passage time

Let TY [i ] (resp. TZ [i ]) be the random variable denoting the
absorption time in chain Y (resp. Z) where i is the initial state:

TZ [i ] ≤st TY [i ]

E(TZ [i ]) =
∑

j MZ [i , j] ≤ E(TY [i ]) =
∑

j MY [i , j]
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Censoring techniques (1)

Consider a DTMC with transition matrix Q.

Consider a partition of the state space (E ,E c ), Q is written:

Q =

(

QE QEE c

QE cE QE c

)

E

E c

The censored Markov chain introduced by Levy 57 (called
watched Markov chain).

The CMC only watches the chain when it is in E .

Transition matrix of CMC is defined as:

SE = QE + QEE c

(

∞
∑

i=0

(QE c )i

)

QE cE
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Censoring techniques (2)

Computing SE is not easy if Q is large: If (QE c ) does not
contain any recurrent class, the fundamental matrix is:

∞
∑

i=0

(QE c )i = (I − QE c )−1

If the chain is finite but not ergodic, all states of E c must be
transient (no reccurent class or absorbing states)

When Q is very large: difficult to analyse Q

It is difficult also to compute (I − QE c )−1

Proposed approach: we derive stochastic bounds to SE

(without knowing all informations about Q neither SE ).
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What can ≤st Bounds provide?

X the exact chain (state space S).

Y censored chain (state space E ).

Z upper bound to Y , ≤st monotone (state space E ).

What can we deduce for performability measures of X to Z.
1 Upper bounds to exact steady-state probabilities.
2 Upper bounds to exact steady-state rewards.
3 Upper and lower bounds to exact absorption probabilities.
4 Lower bound to exact mean first passage time.
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Bounds to steady state measures

Sum of steady-state probabilities

Assuming that E = S ′ ∪ S ′′ is the censored subset and that states
of S ′′ are placed at the end of E , then:

∑

i∈S ′′

πE (i) ≤
∑

i∈S ′′

πSE
(i) ≤

∑

i∈S ′′

πS
sup
E

(i)

Steady-state rewards

Let ρ : S → R be the reward function that assigns to each state
i ∈ S a reward value ρ(i) ≥ 0 for all i . Let E be the set of states
which has non zero rewards. Assuming that we sort the states in E

such that function ρ is non decreasing, then:

∑

i∈E

ρ(i)πE (i) ≤
∑

i∈E

ρ(i)πSE
(i) ≤

∑

i∈E

ρ(i)πS
sup
E

(i)
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Bounds to absorption probability

X contains a finite number of absorbing states.

E contains all absorbing states and the states which
immediately precede absorbing states and the initial state i .

Absorption probabilities

The absorbing probabilities in each absorbing state are the same in
both chains (the exact X and the censored Y).

Mean number of passages

Let MX [i , j] (resp. MY [i , j]) be the mean number of passages in j

before absorption knowing that the initial state is i for chain X
(resp. Y), then:

MX [i , j] = MY [i , j] if j ∈ E



Stochastic comparison Censoring techniques Bounding performability measures by censoring techniques Algorithms for bounding censo

Bounds to absorption probability

X contains a finite number of absorbing states.

E contains all absorbing states and the states which
immediately precede absorbing states and the initial state i .

Absorption probabilities

The absorbing probabilities in each absorbing state are the same in
both chains (the exact X and the censored Y).

Mean number of passages

Let MX [i , j] (resp. MY [i , j]) be the mean number of passages in j

before absorption knowing that the initial state is i for chain X
(resp. Y), then:

MX [i , j] = MY [i , j] if j ∈ E



Stochastic comparison Censoring techniques Bounding performability measures by censoring techniques Algorithms for bounding censo

Bounds to absorption time

TX [i ] be the random variable denoting the absorption time in
chain X (resp. Y), i is the initial state.

TY [i ] be the random variable denoting the absorption time Y.

≤st comparison of TX [i ] and TY [i ] is defined on dates that
∈ N and not on states.

Mean first passage time

The mean absorption time (first passage time) in chain Y is less or
equal than the mean absorption time in chain X :

E(TY [i ]) ≤ E(TX [i ])
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Algorithms for bounding CMC

1 Truffet’s approach: Based on QE published in Applied
probability journal 1997 by Truffet.

2 DPY (Dayar Pekergin Younes) approach: based on QE and
QE cE

Tugrul Dayar, Nihal Pekergin and Sana Younes

Conditional steady-state bounds for a subset of states in Markov

chain, SMCtools 2006

3 FPY (Fourneau Pekergin Younes) approach: based on QE and
some information about E c .

Jean Michel Fourneau, Nihal Pekergin and Sana Younes

Censoring Markov Chains and Stochastic Bounds, EPEW 2007
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Truffet’s approach

Use only QE .

Two steps:
1 First add the slack probability in the last column of QE to

make it stochastic
2 Make it monotone by apply Vincent algorithm

Simple, optimal if we know only QE but needs to obtain
something more accurate

A lower bound is obtained by adding slack probabily to the
first column of QE .
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Truffet’s approach

Q =













0.2 0.3 0.2 0.2 0.1
0.4 0.2 0.2 0 0.2
0.2 0.3 0.3 0.1 0.1

0.1 0.2 0.2 0.3 0.2
0 0.3 0.3 0.3 0.1













slack probability =





0.3
0.2
0.2





Add slack probability in the last column




0.2 0.3 0.5
0.4 0.2 0.4
0.2 0.3 0.5





Make it monotone

T (QE ) =





0.2 0.3 0.5
0.2 0.3 0.5
0.2 0.3 0.5



 ≥st SE =





0.23 0.43 0.33
0.41 0.29 0.29
0.22 0.38 0.38




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DPY

Use QE and QEE c .

Gives a better bound than Truffet’s bound.

If QEE c is rank-1, DPY gives the exact censored matrix.

For simplicity we illustrate the algorithm by the following
example.
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DPY:Example (1)

Q =













0.2 0.3 0.2 0.2 0.1
0.4 0.2 0.2 0 0.2
0.2 0.3 0.3 0.1 0.1

0.1 0.2 0.2 0.3 0.2
0 0.3 0.3 0.3 0.1













slack probability =





0.3
0.2
0.2





Compute G such that:

G =

[

1 0.4/0.5 0.2/0.5
1 1 0.3/0.6

]

Determine Max(G ) = [1 1 0.5]
To obtain what we will add to QE to obtain an upper bound
to SE , we compute:

[0 (1 − 0.5) 0.5] ∗





0.3
0.2
0.2



 =





0 0.15 0.15
0 0.1 0.1
0 0.1 0.1




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DPY:Example (2)

Add to QE to obtain:




0.2 0.45 0.35
0.4 0.3 0.3
0.2 0.4 0.4





Make it monotone

SE ≤st DPY (QE ) =





0.2 0.45 0.35
0.2 0.45 0.35
0.2 0.4 0.4



 ≤st T (QE )

[

0.23 0.43 0.33
0.41 0.29 0.29
0.22 0.38 0.38

]

≤st

[

0.2 0.45 0.35
0.2 0.45 0.35
0.2 0.4 0.4

]

≤st

[

0.2 0.3 0.5
0.2 0.3 0.5
0.2 0.3 0.5

]
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FPY:Approach based on paths and graph algorithm

Theorem

Let LE be an element-wise lower bound to SE , QE ≤ LE ≤ SE .

Then

SE ≤st T (LE ) ≤st T (QE )

Main idea to compute LE

(
∑∞

i=0(QE c )i )[j , k] is the sum of all probability of paths
entering in E c from j and leaving it after an arbitrary number
of visits inside E c from k.

We select some paths instead of generating all of them

We adapt several well-known graph algorithms, shortest path ,
Breadth First search, to select some paths and compute their
probability.
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Paths selection

BFS

We start from an initial state belonging to E .

The probability of a path is the product of the probability of
the arcs.

We fix the depth for the tree selected.

Shorthest Path

We adapt Dijkstra algorithme for our use.

The weight in the path is −log(Q(i , j)).

The shortest path according to this weight is the path with
the highest probability.
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Improve SP by taking self loops

Let P be a path selected with probability p and x a node of P.

If there is a self loop on x that has probability q, the
probability of Px the path obtained by considering the self
loop is pq.

By considering i passage times in x the obtained probability is
pqi > p.

If we consider all i times the probability is p/1 − q > pqi > p.

So if we take under consideration a self loop we obtain a
better probability that is good for the accuracy of the bound.
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Conclusion and perspective

Applying censored techniques and stochastic comparison in
DTMCs model checking (submitted).

Extend to infinite Markov chains .

Study transient time between exact and the censored Markov
chain.

Some remarks for DPY:

We think that DPY is optimal if we know only QE and QE cE

(need a proof).
Implementation: Is it easy to generate only QE and QE cE

without generating the remaining blocks?
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